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Hardware/Software Co-design
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V. SIDEBARS

begin sidebar: Co-design in Embedded Systems
Hardware/software co-design has long been a feature of
power-sensitive embedded system designs. In this context, co-
design refers to a design methodology to create integrated
processor + software solutions that are optimized to deliver
more useful work per watt than an unmodified off-the-shelf
design. The embedded processor market has refined co-design
processes over the past 20 years to meet the demanding
cost and power efficiency requirements of battery-powered
consumer electronics applications (smart phones, MP3 players,
etc.), and power-sensitive high-performance embedded appli-
cations like avionics systems in aircraft. What has made it so
successful is a continuing focus on developing tools that make
hardware-software co-design productive, cost-effective, and
beneficial, such as automated processor synthesis tools, cycle
accurate simulators, and automated generation of software
tools (compilers and debuggers) from hardware specifications.
These tools have broken through the slow pace of system
design that held back the embedded industry for many years,
and continues to hold back back necessary advances in the
HPC space.
end sidebar: Co-design in Embedded Systems
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Fig. 6. Multiple modeling approaches are required to cover
both the scale and accuracy required to understand system
design trade-offs. The two key axes for simulation and modeling
techniques are fidelity of the model (horizontal axis) and the scale
of system you can simulate.

begin sidebar: Multiresolution Modeling

Modeling, simulation, and compiler analysis all play syn-
ergistic roles in the co-design process to cover a broad space
of design parameters. Figure 6 shows that a multi-resolution
approach using multiple modeling methodologies must be
employed to cover both the scale of exascale systems and
the fidelity required to have confidence in our design choices.
Tools such as cycle accurate hardware simulation (in green)
offer extreme detail in their modeling capability, but limit
the scale of system that can modeled to node size or small
clusters. Software simulators, such as SST macro, can expand
the scale of system that can be modeled, but must neglect
some detail to achieve that scalability. Lastly, the constitutive
models and other empirical modeling methods can cover much
larger systems, but by definition only model effects included
as parameters in the model. The majority of modeling is done
by emperical models because they are faster to construct and
evaluate, but the software-based, and cycle-accurate models
are used to verify that the simpler model has included all
important effects, and has not neglected anything any essential
(but unanticipated) effects.
end sidebar: Multiresolution Modeling

Exascale co-design

Simulation is key
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Hardware Model Validation

Hardware model is a set of simulation input parameters,
e.g., network topology, network bandwidth/latency, node
frequency, etc.

The goal of of simulation validation is to establish the
accuracy by quantizing the error between the simulated
execution and the execution on the physical machine

The error of the simulation can be used to guide future
tuning process
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Validation Work Flow
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Existing Metrics

Coarse-grained metrics, such as total execution time,
lacks fidelity to identify fine-grained execution differences

Insensitivity to some parameters
Some parameters have adversarial effects

Detailed traces are not ready for quantitative comparison

TAU, Scalasca, Vampir, IPM, mpiP, etc.
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Proposed Metrics

Benefits

Fine-grained metrics improves validation fidelity
Matrix format facilitates quantitative comparison

Experiment Environment

Hopper at SNL (a Cray XE6 cluster)
Gemini interconnect with two communication paths: fast
memory access (FMA) and block transfer engine (BTE)
miniMD and coMD as benchmark
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MPI Histogram
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Collective Synchronization
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Node-to-node Communication
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Link Bandwidth and Latency
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(b) MPI histogram

The error measured by MPI histogram converges at 2.4Ghz, which

is the nominal value
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Link Bandwidth and Latency
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(c) Node-to-node timing
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(d) Collective Synchronization

The error measured by node-to-node timing and collective

synchronization converges at 2.4Ghz.
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Auto-tuning Work Flow
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