Tools for Enabling Automatic Validation of Large-scale Parallel Application Simulations

Deli Zhang Gilbert Hendry Damian Dechev

University of Central Florida

Sandia National Laboratories

October 2, 2014

Hardware/Software Co-design

- Exascale co-design
- Simulation is key

Hardware Model Validation

- Hardware model is a set of simulation input parameters, e.g., network topology, network bandwidth/latency, node frequency, etc.
- The goal of of simulation validation is to establish the accuracy by quantizing the error between the simulated execution and the execution on the physical machine
- The error of the simulation can be used to guide future tuning process

Validation Work Flow

- Gather execution traces
- Distill statistical data
- Compute errors through comparison

Existing Metrics

- Coarse-grained metrics, such as total execution time, lacks fidelity to identify fine-grained execution differences
 - Insensitivity to some parameters
 - Some parameters have adversarial effects
- Detailed traces are not ready for quantitative comparison
 - TAU, Scalasca, Vampir, IPM, mpiP, etc.

Proposed Metrics

- Benefits
 - Fine-grained metrics improves validation fidelity
 - Matrix format facilitates quantitative comparison
- Experiment Environment
 - Hopper at SNL (a Cray XE6 cluster)
 - Gemini interconnect with two communication paths: fast memory access (FMA) and block transfer engine (BTE)
 - miniMD and coMD as benchmark

By-node

- Break down by rank
- 2 × N matrix

MPI Histogram

- Break down by MPI functions
- $F \times N$ matrix

Collective Synchronization

- Collective functions as synchronization barriers
- Break down by collective phases
- $S \times N$ matrix

Node-to-node Communication

- Pair-wise timing
- N × N matrix

Link Bandwidth and Latency

The error measured by MPI histogram converges at 2.4Ghz, which is the nominal value

Link Bandwidth and Latency

The error measured by node-to-node timing and collective synchronization converges at 2.4Ghz.

Auto-tuning Work Flow

 Search the parameter space for the optimal values