2015 IEEE International Conference on Cluster Computing

Extending LDMS to Enable Performance Monitoring
in Multi-Core Applications

Steven Feldman, Deli Zhang, and Damian Dechev
University of Central Florida
Orlando, FL
Email: dechev@eecs.ucf.edu

Abstract—Identifying design patterns that limit the perfor-
mance of multi-core algorithms is a challenging task. There are
many known methods by which threads synchronize their actions
and each method may exhibit different behavior in different use
cases. These use cases may vary in regards to the workload being
executed, number of parallel tasks, dependencies between these
tasks, and the behavior of the system scheduler. Restructuring
algorithms to overcome performance limitations requires intimate
knowledge on how these algorithms utilize the hardware. In our
experience, we have found a lack of adequate tools to gain such
knowledge.

To address this, we have enhanced and implemented addi-
tional data sampler modules for OVIS’s [1] Lightweight Dis-
tributed Metric Service (LDMS) [2] to enable scalable distributed
collection of hardware performance counter data. These modules
provide an interface by which LDMS can utilize the PAPI library,
Linux perf tools, and RAPL to collect hardware performance
data of interest. Using these samplers, we plan to monitor the
intra-node behavior, including contention for node level shared
resources, of multi-core applications for a diverse set of use
cases. We are currently exploring how the values reported
are affected by the level of concurrency, the synchronization
methodologies, and progress guarantees. We hope to use this
information to identify ways to restructure algorithms to increase
their performance.

I. INTRODUCTION

Developing high performing multi-core algorithms is a
challenging task. This task is complicated by numerous factors
that may impact the performance of a multi-core application.
These factors include the hardware the application is executed
on, the number of executing threads, memory access patterns,
and how the algorithm is currently being used. We seek better
understanding of the impact of these factors through the use of
hardware performance counters. A major difference between
this work and the typical use case of these counters is that we
are performing the collection as a system service using a soft-
ware package called Lightweight Distributed Metric Service
(LDMS) [2] that was developed as part of a suite of scalable
HPC monitoring tools called OVIS [1]. We are exploring this
methodology in order to evaluate the effectiveness of using
periodic performance counter data collection for evaluation
of distributed multi-core applications and algorithms. The
advantage of developing this type of utility is that it can be
used to inform code users and developers of inefficiencies and
changes in efficiency over the life of a system due to system
software and hardware updates and application code changes.

To this end we are extending existing, and developing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE
DOI 10.1109/CLUSTER.2015.125

717

James Brandt
Sandia National Laboratories
Livermore, CA
Email: brandt@sandia.gov

new, hardware performance counter data collection modules
for LDMS. This will enable us to monitor both hardware
and software events associated with distributed application
execution. By analyzing the results of experiments monitored
in this fashion, we hope to identify ways to characterize
and improve the performance of the associated multi-core
algorithms. This methodology can be utilized on HPC systems
of any scale due to the distributed nature of LDMS’s collection,
transport, and storage.

In particular our contributions described in this paper are
the enhancement of LDMS’s perf_event [3] sampler, imple-
mentation of two additional samplers for the PAPI [4] and
RAPL [5] libraries and experiments to utilize performance
counter information, collected in this fashion, along with
related analyses. These samplers provide scalable system wide
access to data from a variety of hardware performance counter
and power consumption monitoring tools. Analysis of our
preliminary experiments using these samplers has identified
patterns that may explain certain performance behavior of
multi-core applications. Using this information, we hope to
identify ways to restructure algorithms to overcome perfor-
mance limitations.

The rest of this paper is organized as follows: We first
describe our experimental configurations, including LDMS
related monitoring parameters, and the results of analysis of
the resulting data in Section II. Sections III-A, III-B, and III-C
respectively describe the perf, PAPI, and RAPL sampler mod-
ules, our contributions to them, and configuration syntax.
We conclude by summarizing our experimental results and
describing our planned future work in this area in Section IV.

II. INITIAL EXPERIMENTS AND INSIGHTS

In this section we describe our initial experiments and
the insights we have gained from them. In our experimental
evaluation we use synthetic tests designed to simulate how
multi-core applications may use a concurrent data structure. In
this experimental evaluation, we explored how different levels
of concurrency affect the performance of the stack and hash
map data structures. For these experiments, we utilize our PAPI
based sampler, described in Section III-B, to collect hardware
performance counter information. To enable sampling of multi-
threaded applications, we explicitly add the process ids of each
thread created by the application. These experiments focused
on examining the number of cycles and instructions consumed
by an application and how they related to its performance.

@) CO‘ pute
1(!) I
& SOCIety

Increase in metric value

#Threads Change in Work Change in Instructions || Change in Cycles Change in Stalled
Stack | Hash Map || Stack Hash Map Stack | Hash Map || Stack | Hash Map
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 -0.24 0.80 -0.09 0.78 1.01 1.01 2.08 1.05
8 -0.57 5.93 0.59 5.95 6.97 6.87 11.55 6.28
16 -0.81 10.24 0.62 9.71 14.68 13.43 30.23 13.39
32 -0.91 13.37 0.28 11.61 22.19 22.20 49.64 26.31
64 -0.90 25.07 -0.02 10.50 2221 21.26 2421 8.94
Figure 1: Algorithm Performance Comparison
— Threads:1 —— T:2 —— T:8 —— T:16 T: 32 T: 64
o 25
é 20
‘/*. M é 15 W—M/ﬂ\"ﬁ*\‘,“\x‘ﬁﬂ
—= - I, g o
— ¥ - ’ - — - v
0 5 10 15 20 0 5 10 15 20
Seconds Seconds

Increase in metric value

Increase in metric value

50
40
30

20

(a) Lock-Free Stack

(b) Wait-Free Hash Map

Figure 2: Increase in cycles compared to single thread execution.

Seconds

(a) Lock-Free Stack

Increase in metric value

Seconds

(b) Wait-Free Hash Map

Figure 3: Increase in instructions compared to single thread execution.

Seconds

(a) Lock-Free Stack

Increase in metric value

50
40
30

20

Seconds

(b) Wait-Free Hash Map

Figure 4: Increase in stalled cycles compared to single thread execution.

718

The experiments begin by having a main thread construct
and initialize a data structure. Next, it creates a set of worker
threads and then sleeps for a few seconds. While the main
thread sleeps, we attach LDMS samplers to each thread and set
them to sample every 100ms. Upon waking, the main thread
signals the worker threads to begin execution, after which it
sleeps for 20 seconds and then signals the end of execution.
Each worker thread executes operations based on the typical
use case of the data structure being used. When using the stack
data structure, each thread executes a pop or push operation
with equal probability. When the hash map is used, each thread
executes update, find, or insert operations with a probabilities
of 40%, 40%, and 20% respectively.

Figure 1 presents cumulative change in tracked metrics in
each experiment and Figures 2-4 depict the values reported by
different hardware metrics throughout the experiment. Each
line represents the factor increase in reported metric value
compared to single thread execution at a specific level of
concurrency!. Only points representing a change of 2% or
more from the last plotted point for a thread level are plotted.

We see in Figure 1 that the stack’s performance decreases
as the number of threads accessing it increases and, conversely,
the hash map’s performance increases as the number of threads
increases. We attribute the poor performance of the stack to
the contention created by using a single shared pointer. This is
in contrast to the hash map’s implementation, which diffuses
contention across a region of memory. This diffusion, creates
disjoint parallelism, to which we attribute the hash map’s
performance scalability.

Using Figure 2 we see that the hash map cycle usage varies
significantly more than the stacks usage, especially at higher
thread levels. However, they both exhibit roughly the same
relative increase in cycles compared to single thread execution.

Even though the data structures consume relatively the
same number of cycles, we see in Figure 3 that, on average,
the hash map’s relative increase in instructions is significantly
higher then the stack’s increase. Figure 4 reveals that this
discrepancy maybe caused by stalled cycles. We see that the
stack increases in stalled cycles much faster than the hash
map. But this increase does not appear to explain all of the
performance differences.

For the stack data structure, when the number of threads
increase from 1 to 64, the number of operations completed,
over a given time period, decreases by 90%. If we divide the
number instructions and cycles by the number of operation,
we see an increase in instructions per operation and cycles per
instruction. On average it takes 3,000 instructions and 3,100
cycles to perform one operation with one thread and with 64
threads, it increases to 260,000 and 696,000, respectively.

Unlike the stack, the performance of the hash map increases
with the number of threads. Increasing the number of threads
form 1 to 64, leads to a factor of 26 increase in number of
operations completed over a given time period. Interestingly,
the total number of instructions and cycles only increased by
a factor of 15 and 21, respectively. This surprising reduction

IFactor increase is calculated by subtracting from each point the value of
the corresponding point from the single thread execution and then dividing by
that corresponding value.

719

means that the average number of instructions and cycles
needed to execute an operation was reduced by 42.3% and
32.4%. We are unsure as to the cause of this decrease, but
will be investigating this behavior further.
III. LDMS HARDWARE PERFORMANCE COUNTER
SAMPLERS

In this section we describe the LDMS sampler modules
we have enhanced or implemented in order to enable scalable
system wide measurement and analysis, such as that presented
in Section II, on HPC systems.

A. Sampler: perf

Linux’s perf tools, also referred to as perf_event [3], is
a tool that provides access to CPU performance counters,
tracepoints, kprobes, and dynamic tracing. These metrics are
accessed through a generalized abstraction layer that removes
the need to modify code when moving from one architecture
to another architecture that supports similar metrics.

Events can be tracked globally or limited to events trig-
gered by a specified process and they can be further refined to
events that occur on a specified core. Because this tool can be
utilized by root for monitoring of any supported events, it can
be used for global periodic monitoring as a system service. The
monitored information, taken in conjunction with scheduler
and resource manager logs, can provide valuable insight into
how a user application is utilizing node level resources on a
per-core/per-subsystem granularity and how this varies across
the user application’s node allocation.

1) Sampler Enhancement: This sampler implementation
enables LDMS to monitor all hardware and software events
supported by the perf_event tool. While this sampler had
already been written, the user interface for configuration was
difficult to use and it lacked the ability to monitor the uncore
counters. Thus our contribution to this sampler is a simplified
script interface for configuration and extension to the uncore
counters.

After loading the perf_event sampler module (Idm-
sctl$ load name=perfevent) and initializing it (Idmsctl$
config name=perfevent action=init component_id=<int>
set=<string>), a user can track a particular event by calling
the configuration option, specifying the event codes, process
id, cpu core id, and lastly an identifying name for the
event (Idmsctl$ config name=perfevent action=add pid=<int>
cpu=<int> type=<int> id=<int> metricname=<string>). If
the developer specifies a cpu core value of —1, it will track
the specified process across all cpu cores and if a pid of —1
is specified,all processes on a single cpu core will be tracked.

The number of events and processes which can be tracked
by this sampler is only limited by the number supported by
the perf_event library, which may vary on the hardware archi-
tecture. Perf_event provides a utility program, perf list, that
displays a list of supported events for the current architecture.

B. Sampler: PAPI

The Performance API or PAPI project is aimed at devel-
oping a standard programming interface by which hardware
performance counters are accessed [4]. One of PAPI’s most

significant features is its portability; source code which uses
its interfaces can be run on multiple different architectures
with minimal concern for compatibility. Additionally, PAPI
provides tools to determine the availability and compatibility
of various hardware counter events supported on a particular
system. One of PAPI’s limitations, however, is that it can only
be programmed by a user to collect information related to that
users processes and their children. It does not allow user root
to monitor globally and thus cannot be used to provide system
wide monitoring.

1) Sampler Implementation: Our sampler implementation
enables OVIS to monitor all hardware and software events
supported by the PAPI library. After loading (Idmsctl$ load
name=spapi) and initializing (Idmsctl$ config name=spapi
action=init component_id=<int> set=<string>) the PAPI
sampler module, a user can track a particular event by calling
the configuration option, specifying the event name, process
id, and an identifying name for the event (Idmscti$ config
name=spapi action=add pid=<pid> event=<string> metric-
name=<string>).

The API to PAPI differs from that of perf_event in two
regards. The first is that it does not require a numerical event
code; instead a user is able to use a string to identify the event
to track. The second is that it does not allow event tracking to
be limited to a specific core.

The number of events and processes which can be tracked
by this sampler is only limited by the number supported
by the PAPI library, which may vary based on architec-
ture. PAPI provides two utility programs, papi_avail and
papi_component_avail, that display a list of supported events
for the current architecture.

PAPI is capable of automatically monitoring all threads of
a forked process, but not of an attached process, which is how
our sampler uses PAPI to monitor an application. To overcome
this, a user can explicitly configure the sampler to track each
child process. For applications that use a large number of
threads or for applications that create and destroy threads, this
is not an applicable solution. We are currently investigating
alternative libraries and tools that may provide a means by
which to overcome this limitation.

C. Sampler: RAPL

Running Average Power Limit or RAPL is an interface
available on Intel Sandy Bridge or newer processors that
provides the ability to monitor, control and receive notifications
on CPU power consumptions.

1) Sampler Implementation: Our implementation relies on
PAPI’s RAPL component [6], which requires root privileges
and perf tools 3.14 or newer. This component reads the RAPL
values directly from the model-specific registers by using the
x86-msr driver. It tracks RAPL measurements on a per CPU
socket basis, but not a per-process basis.

After loading the RAPL sampler module, a user can
track power consumption after an initial configuration (Idm-
sctl$ config name=rapl action=init component_id=<int>
set=<string>).

720

IV. CONCLUSIONS AND FUTURE WORK

While we are in the initial stages of our research, the results
are promising. As we presented in Section II, our comparison
of the hash map and stack data structures enabled us to identify
a correlation between the poor performance of the stack and
the amount of stalled cycles measured.

We plan to continue exploration of different methodolo-
gies and technologies for lightweight scalable data collection
including implementation of additional LDMS samplers to
provide access to additional hardware performance data. We
are currently exploring the applicability of the powerAPI [7]
library to overcome some limitations in the RAPL library.
Another priority of ours is to identify suitable multi-core
applications to augment our synthetic testing. At the same time,
we are continuing to expand our synthetic tests to gather data
form a wider variety of data structures and use cases.

ACKNOWLEDGMENT

Our enhancement of OVIS is funded by National Sci-
ence Foundation grants NSF ACI-1440530 and NSF CCF-
1218100. OVIS is a project of Sandia National Laboratories,
Albuquerque NM, 87123 and collaborative partner Open Grid
Computing, Austin TX., SAND 2006-2519W. Sandia National
Laboratories is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

REFERENCES

[1] J. M. Brandt, B. J. Debusschere, A. C. Gentile, J. R. Mayo, P. P.
Pébay, D. Thompson, and M. H. Wong, “Ovis-2: A robust distributed
architecture for scalable ras,” in Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on. 1EEE, 2008,
pp. 1-8.

A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,
A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan,
M. Showerman, J. Stevenson, N. Taerat, and T. Tucker, “The
lightweight distributed metric service: A scalable infrastructure
for continuous monitoring of large scale computing systems and
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 154-165. [Online].
Available: http://dx.doi.org/10.1109/SC.2014.18

V. M. Weaver, “Linux perf_event features and overhead,” in The 2nd
International Workshop on Performance Analysis of Workload Optimized
Systems, FastPath, 2013, p. 80.

S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable pro-
gramming interface for performance evaluation on modern processors,”
International Journal of High Performance Computing Applications,
vol. 14, no. 3, pp. 189-204, 2000.

V. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek,
D. Terpstra, and S. Moore, “Measuring energy and power with papi,”
in Parallel Processing Workshops (ICPPW), 2012 41st International
Conference on, Sept 2012, pp. 262-268.

H. McCraw, J. Ralph, A. Danalis, and J. Dongarra, “Power moni-
toring with papi for extreme scale architectures and dataflow-based
programming models,” in Cluster Computing (CLUSTER), 2014 IEEE
International Conference on, Sept 2014, pp. 385-391.

A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier, “Powerapi:

A software library to monitor the energy consumed at the processlevel,”
ERCIM News, vol. 2013, no. 92, 2013.

(2]

(3]

(4]

(6]

